develop #18
@ -2,7 +2,7 @@
|
||||
#include <iostream>
|
||||
|
||||
|
||||
//区域生长算法
|
||||
//区域生长算法
|
||||
int RegionGrow(cv::Mat& src, cv::Mat& matDst, cv::Point2i pt, int th)
|
||||
{
|
||||
cv::Point2i ptGrowing;
|
||||
@ -16,39 +16,39 @@ int RegionGrow(cv::Mat& src, cv::Mat& matDst, cv::Point2i pt, int th)
|
||||
vcGrowPt.push_back(pt);
|
||||
matDst.at<uchar>(pt.y, pt.x) = 255;
|
||||
|
||||
while (!vcGrowPt.empty()) //生长栈不为空则生长
|
||||
while (!vcGrowPt.empty()) //生长栈不为空则生长
|
||||
{
|
||||
pt = vcGrowPt.back(); //取出一个生长点
|
||||
pt = vcGrowPt.back(); //取出一个生长点
|
||||
vcGrowPt.pop_back();
|
||||
|
||||
std::vector<cv::Point2i> temp_vcGrowPt; //临时生长点栈
|
||||
int temp_vcGrowPt_size = 0; //可生长方向数量,因为存在被其余生长点先生长情况,不可直接使用temp_vcGrowPt.size()
|
||||
std::vector<cv::Point2i> temp_vcGrowPt; //临时生长点栈
|
||||
int temp_vcGrowPt_size = 0; //可生长方向数量,因为存在被其余生长点先生长情况,不可直接使用temp_vcGrowPt.size()
|
||||
nSrcValue = src.at<uchar>(pt.y, pt.x);
|
||||
//分别对八个方向上的点进行生长
|
||||
//分别对八个方向上的点进行生长
|
||||
for (int i = 0; i < 8; ++i)
|
||||
{
|
||||
ptGrowing.x = pt.x + DIR[i][0];
|
||||
ptGrowing.y = pt.y + DIR[i][1];
|
||||
//检查是否是边缘点
|
||||
//检查是否是边缘点
|
||||
if (ptGrowing.x < 0 || ptGrowing.y < 0 || ptGrowing.x >(src.cols - 1) || (ptGrowing.y > src.rows - 1))
|
||||
continue;
|
||||
|
||||
nGrowLable = matDst.at<uchar>(ptGrowing.y, ptGrowing.x); //当前待生长点的灰度值
|
||||
if (nGrowLable == 0) //如果标记点还没有被生长
|
||||
nGrowLable = matDst.at<uchar>(ptGrowing.y, ptGrowing.x); //当前待生长点的灰度值
|
||||
if (nGrowLable == 0) //如果标记点还没有被生长
|
||||
{
|
||||
nCurValue = src.at<uchar>(ptGrowing.y, ptGrowing.x);
|
||||
if (abs(nCurValue - nSrcValue) < th) //在阈值范围内则生长
|
||||
if (abs(nCurValue - nSrcValue) < th) //在阈值范围内则生长
|
||||
{
|
||||
// matDst.at<uchar>(ptGrowing.y, ptGrowing.x) = 255;
|
||||
temp_vcGrowPt_size++;
|
||||
temp_vcGrowPt.push_back(ptGrowing); //将下一个生长点压入栈中
|
||||
temp_vcGrowPt.push_back(ptGrowing); //将下一个生长点压入栈中
|
||||
}
|
||||
}
|
||||
else {
|
||||
temp_vcGrowPt_size++;
|
||||
}
|
||||
}
|
||||
//相邻的生长点不是单向生长,则生长点有效
|
||||
//相邻的生长点不是单向生长,则生长点有效
|
||||
if (temp_vcGrowPt_size >= 1) {
|
||||
mat_cnt++;
|
||||
matDst.at<uchar>(pt.y, pt.x) = 255;
|
||||
@ -56,43 +56,43 @@ int RegionGrow(cv::Mat& src, cv::Mat& matDst, cv::Point2i pt, int th)
|
||||
}
|
||||
}
|
||||
return mat_cnt;
|
||||
// bitwise_and(src, matDst, matDst); //与运算可以保留原图像数据
|
||||
// bitwise_and(src, matDst, matDst); //与运算可以保留原图像数据
|
||||
}
|
||||
|
||||
// 定义拟合圆形的函数
|
||||
// 定义拟合圆形的函数
|
||||
void FitCircleCenter(vector<Point>& Circle_Data, Point2f& Circle_Center, float& Circle_R)
|
||||
{
|
||||
//定义计算中间变量
|
||||
double sumX1 = 0.0; //代表Xi的和(从1~n) ,X1代表X的1次方
|
||||
//定义计算中间变量
|
||||
double sumX1 = 0.0; //代表Xi的和(从1~n) ,X1代表X的1次方
|
||||
double sumY1 = 0.0;
|
||||
double sumX2 = 0.0; //代表(Xi)^2的和(i从1~n),X2代表X的二次方
|
||||
double sumX2 = 0.0; //代表(Xi)^2的和(i从1~n),X2代表X的二次方
|
||||
double sumY2 = 0.0;
|
||||
double sumX3 = 0.0;
|
||||
double sumY3 = 0.0;
|
||||
double sumX1Y1 = 0.0;
|
||||
double sumX1Y2 = 0.0;
|
||||
double sumX2Y1 = 0.0;
|
||||
const double N = (double)Circle_Data.size();//获得输入点的个数
|
||||
const double N = (double)Circle_Data.size();//获得输入点的个数
|
||||
|
||||
for (int i = 0; i < Circle_Data.size(); ++i)//遍历组中所有数据
|
||||
for (int i = 0; i < Circle_Data.size(); ++i)//遍历组中所有数据
|
||||
{
|
||||
double x = 0;
|
||||
double y = 0;
|
||||
x = Circle_Data[i].x; //获得组中第i个点的x坐标
|
||||
y = Circle_Data[i].y; //获得组中第i个点的y坐标
|
||||
double x2 = x * x; //计算x^2
|
||||
double y2 = y * y; //计算y^2
|
||||
double x3 = x2 * x; //计算x^3
|
||||
double y3 = y2 * y; //计算y^3
|
||||
double xy = x * y; //计算xy
|
||||
double x1y2 = x * y2; //计算x*y^2
|
||||
double x2y1 = x2 * y; //计算x^2*y
|
||||
x = Circle_Data[i].x; //获得组中第i个点的x坐标
|
||||
y = Circle_Data[i].y; //获得组中第i个点的y坐标
|
||||
double x2 = x * x; //计算x^2
|
||||
double y2 = y * y; //计算y^2
|
||||
double x3 = x2 * x; //计算x^3
|
||||
double y3 = y2 * y; //计算y^3
|
||||
double xy = x * y; //计算xy
|
||||
double x1y2 = x * y2; //计算x*y^2
|
||||
double x2y1 = x2 * y; //计算x^2*y
|
||||
|
||||
sumX1 += x; //sumX=sumX+x;计算x坐标的和
|
||||
sumY1 += y; //sumY=sumY+y;计算y坐标的和
|
||||
sumX2 += x2; //计算x^2的和
|
||||
sumY2 += y2; //计算各个点的y^2的和
|
||||
sumX3 += x3; //计算x^3的和
|
||||
sumX1 += x; //sumX=sumX+x;计算x坐标的和
|
||||
sumY1 += y; //sumY=sumY+y;计算y坐标的和
|
||||
sumX2 += x2; //计算x^2的和
|
||||
sumY2 += y2; //计算各个点的y^2的和
|
||||
sumX3 += x3; //计算x^3的和
|
||||
sumY3 += y3;
|
||||
sumX1Y1 += xy;
|
||||
sumX1Y2 += x1y2;
|
||||
@ -117,11 +117,11 @@ void FitCircleCenter(vector<Point>& Circle_Data, Point2f& Circle_Center, float&
|
||||
|
||||
int RANSAC_FitCircleCenter(vector<Point>& Circle_Data, Point2f& Circle_Center, float& Circle_R, float thresh)
|
||||
{
|
||||
// 定义RANSAC迭代次数和最小样本数
|
||||
// 定义RANSAC迭代次数和最小样本数
|
||||
int iterations = 1000;
|
||||
int min_samples = 3;
|
||||
|
||||
// 使用RANSAC算法拟合圆形
|
||||
// 使用RANSAC算法拟合圆形
|
||||
float best_radius = 0;
|
||||
Point2f best_center;
|
||||
std::vector<int> is_inlier(Circle_Data.size(), 0);
|
||||
@ -132,7 +132,7 @@ int RANSAC_FitCircleCenter(vector<Point>& Circle_Data, Point2f& Circle_Center, f
|
||||
|
||||
while (sample_count < iterations)
|
||||
{
|
||||
// 随机选择最小样本数个点
|
||||
// 随机选择最小样本数个点
|
||||
vector<Point> points;
|
||||
for (int j = 0; j < min_samples; j++)
|
||||
{
|
||||
@ -141,12 +141,12 @@ int RANSAC_FitCircleCenter(vector<Point>& Circle_Data, Point2f& Circle_Center, f
|
||||
points.push_back(point);
|
||||
}
|
||||
|
||||
// 使用最小二乘法拟合圆形
|
||||
// 使用最小二乘法拟合圆形
|
||||
float radius;
|
||||
Point2f center;
|
||||
FitCircleCenter(points, center, radius);
|
||||
|
||||
// 计算所有点与圆之间的距离,以确定内点
|
||||
// 计算所有点与圆之间的距离,以确定内点
|
||||
vector<Point2f> inliers;
|
||||
for (int i = 0; i < Circle_Data.size(); i++)
|
||||
{
|
||||
@ -160,28 +160,28 @@ int RANSAC_FitCircleCenter(vector<Point>& Circle_Data, Point2f& Circle_Center, f
|
||||
inliers.push_back(point);
|
||||
}
|
||||
}
|
||||
// 更新最佳拟合圆形
|
||||
// 更新最佳拟合圆形
|
||||
if (inliers.size() > max_inlier_num) {
|
||||
max_inlier_num = inliers.size();
|
||||
is_inlier = is_inlier_tmp;
|
||||
best_radius = radius;
|
||||
best_center = center;
|
||||
}
|
||||
//6. 更新迭代的最佳次数
|
||||
//6. 更新迭代的最佳次数
|
||||
if (inliers.size() == 0)
|
||||
{
|
||||
iterations = 1000;
|
||||
}
|
||||
else
|
||||
{
|
||||
double epsilon = 1.0 - double(inliers.size()) / (double)Circle_Data.size(); //野值点比例
|
||||
double p = 0.9; //所有样本中存在1个好样本的概率
|
||||
double epsilon = 1.0 - double(inliers.size()) / (double)Circle_Data.size(); //野值点比例
|
||||
double p = 0.9; //所有样本中存在1个好样本的概率
|
||||
double s = 3.0;
|
||||
iterations = int(std::log(1.0 - p) / std::log(1.0 - std::pow((1.0 - epsilon), s)));
|
||||
}
|
||||
sample_count++;
|
||||
}
|
||||
//7. 基于最优的结果所对应的内点做最终拟合
|
||||
//7. 基于最优的结果所对应的内点做最终拟合
|
||||
std::vector<cv::Point2f> inliers;
|
||||
inliers.reserve(max_inlier_num);
|
||||
for (int i = 0; i < is_inlier.size(); i++)
|
||||
@ -297,9 +297,9 @@ int defaultIsoData(int* data)
|
||||
// {
|
||||
// return dst;
|
||||
// }
|
||||
// //brightness_offset:亮度偏移范围 -255 到 +255
|
||||
// //contrast_factor:对比度因子范围 0.1 到 3.0(1.0为不变)
|
||||
// //opacity_factor:透明度因子范围 0 到 1(0为透明,1为不透明)
|
||||
// //brightness_offset:亮度偏移范围 -255 到 +255
|
||||
// //contrast_factor:对比度因子范围 0.1 到 3.0(1.0为不变)
|
||||
// //opacity_factor:透明度因子范围 0 到 1(0为透明,1为不透明)
|
||||
//
|
||||
// Mat img8bit;
|
||||
// src.convertTo(img8bit, CV_8UC1, 0.00390625);
|
||||
@ -311,7 +311,7 @@ int defaultIsoData(int* data)
|
||||
// img_with_opacity.convertTo(img_with_opacity, CV_8UC1);
|
||||
//
|
||||
// Mat img_with_opacity_rgb;
|
||||
// cvtColor(img_with_opacity, img_with_opacity_rgb, COLOR_GRAY2BGR); // 将单通道灰度图像转换为三通道RGB图像
|
||||
// cvtColor(img_with_opacity, img_with_opacity_rgb, COLOR_GRAY2BGR); // 将单通道灰度图像转换为三通道RGB图像
|
||||
//
|
||||
// for (int y = 0; y < pseudoImg.rows; y++) {
|
||||
// for (int x = 0; x < pseudoImg.cols; x++) {
|
||||
@ -424,30 +424,30 @@ Mat bgr_scale_image(Mat src, float maxVal, float minVal)
|
||||
|
||||
//int blendImages(const Mat& src, const Mat& mark, const Mat& dst, double alpha)
|
||||
//{
|
||||
// // 检查输入图像的类型和大小
|
||||
// // 检查输入图像的类型和大小
|
||||
// if (src.type() != CV_16UC1 || mark.type() != CV_8UC3)
|
||||
// {
|
||||
// return -1; // 错误处理
|
||||
// return -1; // 错误处理
|
||||
// }
|
||||
//
|
||||
// // 将 alpha 从 0-100 的范围转换为 0-1
|
||||
// // 将 alpha 从 0-100 的范围转换为 0-1
|
||||
// double alpha_normalized = alpha / 100.0;
|
||||
//
|
||||
// // 将 src 从 16 位转换为 8 位
|
||||
// // 将 src 从 16 位转换为 8 位
|
||||
// Mat src8U;
|
||||
// src.convertTo(src8U, CV_8UC1, 1.0 / 256); // 将16位值缩放到0-255范围
|
||||
// src.convertTo(src8U, CV_8UC1, 1.0 / 256); // 将16位值缩放到0-255范围
|
||||
//
|
||||
// // 将 src8U 转换为彩色图像,以便与 mark 融合
|
||||
// // 将 src8U 转换为彩色图像,以便与 mark 融合
|
||||
// Mat srcColor;
|
||||
// cvtColor(src8U, srcColor, COLOR_GRAY2RGB); // 转换为 BGR 彩色图像
|
||||
// cvtColor(src8U, srcColor, COLOR_GRAY2RGB); // 转换为 BGR 彩色图像
|
||||
//
|
||||
// // 创建一个输出图像
|
||||
// // 创建一个输出图像
|
||||
// Mat blended;
|
||||
//
|
||||
// // 使用 addWeighted 进行融合
|
||||
// // 使用 addWeighted 进行融合
|
||||
// addWeighted(srcColor, 1, mark,alpha_normalized, 0.0, blended);
|
||||
// blended.copyTo(dst);
|
||||
// return 1; // 成功
|
||||
// return 1; // 成功
|
||||
//}
|
||||
|
||||
|
||||
@ -792,9 +792,9 @@ Mat render_mask_image(Mat src, Mat pseudoImg, int brightness_offset, double cont
|
||||
{
|
||||
return dst;
|
||||
}
|
||||
//brightness_offset:亮度偏移范围 -255 到 +255
|
||||
//contrast_factor:对比度因子范围 0.1 到 3.0(1.0为不变)
|
||||
//opacity_factor:透明度因子范围 0 到 1(0为透明,1为不透明)
|
||||
//brightness_offset:亮度偏移范围 -255 到 +255
|
||||
//contrast_factor:对比度因子范围 0.1 到 3.0(1.0为不变)
|
||||
//opacity_factor:透明度因子范围 0 到 1(0为透明,1为不透明)
|
||||
|
||||
Mat img8bit;
|
||||
src.convertTo(img8bit, CV_8UC1, 0.00390625);
|
||||
@ -806,7 +806,7 @@ Mat render_mask_image(Mat src, Mat pseudoImg, int brightness_offset, double cont
|
||||
img_with_opacity.convertTo(img_with_opacity, CV_8UC1);
|
||||
|
||||
Mat img_with_opacity_rgb;
|
||||
cvtColor(img_with_opacity, img_with_opacity_rgb, COLOR_GRAY2BGR); // 将单通道灰度图像转换为三通道RGB图像
|
||||
cvtColor(img_with_opacity, img_with_opacity_rgb, COLOR_GRAY2BGR); // 将单通道灰度图像转换为三通道RGB图像
|
||||
|
||||
for (int y = 0; y < pseudoImg.rows; y++) {
|
||||
for (int x = 0; x < pseudoImg.cols; x++) {
|
||||
@ -1212,31 +1212,28 @@ Mat get_photon_image(Mat src, float sec, float Wcm, float Hcm, float sr)
|
||||
return dst;
|
||||
}
|
||||
|
||||
Mat get_magic_wand_image(Mat src, int x, int y, int th)
|
||||
Mat get_magic_wand_image(Mat src,int x,int y,float max,float min)
|
||||
{
|
||||
std::cout << "1" << std::endl;
|
||||
Mat matDst = cv::Mat::zeros(src.size(), CV_8UC1);
|
||||
std::cout << "11" << std::endl;
|
||||
cv::Point2i pt(x, y);
|
||||
std::cout << "12" << std::endl;
|
||||
cv::Point2i pt(x,y);
|
||||
int w = src.cols;
|
||||
int h = src.rows;
|
||||
// int nSrcValue = src.at<uchar>(pt.y, pt.x);
|
||||
int nSrcValue = src.data[pt.y * w + pt.x];
|
||||
if(nSrcValue < min)
|
||||
{
|
||||
return matDst;
|
||||
}
|
||||
|
||||
cv::Point2i ptGrowing;
|
||||
std::cout << "13" << std::endl;
|
||||
int nGrowLable = 0;
|
||||
int nSrcValue = 0;
|
||||
int nCurValue = 0;
|
||||
int mat_cnt = 0;
|
||||
int DIR[8][2] = { { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 } };
|
||||
std::cout << "14" << std::endl;
|
||||
std::vector<cv::Point2i> vcGrowPt;
|
||||
std::cout << "15" << std::endl;
|
||||
vcGrowPt.push_back(pt);
|
||||
std::cout << "16" << std::endl;
|
||||
matDst.at<uchar>(pt.y, pt.x) = 255;
|
||||
std::cout << "17" << std::endl;
|
||||
std::cout << "w:" << src.rows << "h:" << src.cols << std::endl;
|
||||
std::cout << pt.y <<":1:" << pt.x << std::endl;
|
||||
nSrcValue = src.at<uchar>(pt.y, pt.x);
|
||||
std::cout << "2" << std::endl;
|
||||
// matDst.at<uchar>(pt.y, pt.x) = 255;
|
||||
matDst.data[pt.y * w + pt.x] = 255;
|
||||
while (!vcGrowPt.empty())
|
||||
{
|
||||
pt = vcGrowPt.back();
|
||||
@ -1245,38 +1242,38 @@ Mat get_magic_wand_image(Mat src, int x, int y, int th)
|
||||
std::vector<cv::Point2i> temp_vcGrowPt;
|
||||
int temp_vcGrowPt_size = 0;
|
||||
// nSrcValue = src.at<uchar>(pt.y, pt.x);
|
||||
//分别对八个方向上的点进行生长
|
||||
//分别对八个方向上的点进行生长
|
||||
for (int i = 0; i < 8; ++i)
|
||||
{
|
||||
ptGrowing.x = pt.x + DIR[i][0];
|
||||
ptGrowing.y = pt.y + DIR[i][1];
|
||||
//检查是否是边缘点
|
||||
//检查是否是边缘点
|
||||
if (ptGrowing.x < 0 || ptGrowing.y < 0 || ptGrowing.x >(src.cols - 1) || (ptGrowing.y > src.rows - 1))
|
||||
continue;
|
||||
|
||||
nGrowLable = matDst.at<uchar>(ptGrowing.y, ptGrowing.x); //当前待生长点的灰度值
|
||||
if (nGrowLable == 0) //如果标记点还没有被生长
|
||||
// nGrowLable = matDst.at<uchar>(ptGrowing.y, ptGrowing.x);
|
||||
nGrowLable = matDst.data[ptGrowing.y * w + ptGrowing.x]; //当前待生长点的灰度值
|
||||
if (nGrowLable == 0) //如果标记点还没有被生长
|
||||
{
|
||||
nCurValue = src.at<uchar>(ptGrowing.y, ptGrowing.x);
|
||||
if (abs(nCurValue - nSrcValue) < th) //在阈值范围内则生长
|
||||
nCurValue = src.data[ptGrowing.y * w + ptGrowing.x];
|
||||
if (nCurValue >= min) //在阈值范围内则生长
|
||||
{
|
||||
// matDst.at<uchar>(ptGrowing.y, ptGrowing.x) = 255;
|
||||
temp_vcGrowPt_size++;
|
||||
temp_vcGrowPt.push_back(ptGrowing); //将下一个生长点压入栈中
|
||||
temp_vcGrowPt.push_back(ptGrowing); //将下一个生长点压入栈中
|
||||
}
|
||||
}
|
||||
else {
|
||||
temp_vcGrowPt_size++;
|
||||
}
|
||||
}
|
||||
std::cout << "3" << std::endl;
|
||||
//相邻的生长点不是单向生长,则生长点有效
|
||||
//相邻的生长点不是单向生长,则生长点有效
|
||||
if (temp_vcGrowPt_size >= 1) {
|
||||
mat_cnt++;
|
||||
matDst.at<uchar>(pt.y, pt.x) = 255;
|
||||
// matDst.at<uchar>(pt.y, pt.x) = 255;
|
||||
matDst.data[pt.y * w + pt.x] = 255;
|
||||
vcGrowPt.insert(vcGrowPt.end(), temp_vcGrowPt.begin(), temp_vcGrowPt.end());
|
||||
}
|
||||
std::cout << "4" << std::endl;
|
||||
}
|
||||
return matDst;
|
||||
}
|
Loading…
Reference in New Issue
Block a user